The EcoKI type I restriction-modification system in Escherichia coli affects but is not an absolute barrier for conjugation.

نویسندگان

  • Louise Roer
  • Frank M Aarestrup
  • Henrik Hasman
چکیده

The rapid evolution of bacteria is crucial to their survival and is caused by exchange, transfer, and uptake of DNA, among other things. Conjugation is one of the main mechanisms by which bacteria share their DNA, and it is thought to be controlled by varied bacterial immune systems. Contradictory results about restriction-modification systems based on phenotypic studies have been presented as reasons for a barrier to conjugation with and other means of uptake of exogenous DNA. In this study, we show that inactivation of the R.EcoKI restriction enzyme in strain Escherichia coli K-12 strain MG1655 increases the conjugational transfer of plasmid pOLA52, which carriers two EcoKI recognition sites. Interestingly, the results were not absolute, and uptake of unmethylated pOLA52 was still observed in the wild-type strain (with an intact hsdR gene) but at a reduction of 85% compared to the uptake of the mutant recipient with a disrupted hsdR gene. This leads to the conclusion that EcoKI restriction-modification affects the uptake of DNA by conjugation but is not a major barrier to plasmid transfer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lack of regulation of the modification-dependent restriction enzyme McrBC in Escherichia coli.

Restriction alleviation (RA) by the type I restriction enzyme EcoKI is caused by treatments that damage DNA. RA is due to proteolysis of the EcoKI HsdR subunit by the ClpXP ATP-dependent protease. Here we show that the modification-dependent enzyme McrBC is not subject to RA, although it is moderately sensitive to ClpAP.

متن کامل

ArdA proteins from different mobile genetic elements can bind to the EcoKI Type I DNA methyltransferase of E. coli K12☆

Anti-restriction and anti-modification (anti-RM) is the ability to prevent cleavage by DNA restriction-modification (RM) systems of foreign DNA entering a new bacterial host. The evolutionary consequence of anti-RM is the enhanced dissemination of mobile genetic elements. Homologues of ArdA anti-RM proteins are encoded by genes present in many mobile genetic elements such as conjugative plasmid...

متن کامل

The restriction-modification genes of Escherichia coli K-12 may not be selfish: they do not resist loss and are readily replaced by alleles conferring different specificities.

Type II restriction and modification (R-M) genes have been described as selfish because they have been shown to impose selection for the maintenance of the plasmid that encodes them. In our experiments, the type I R-M system EcoKI does not behave in the same way. The genes specifying EcoKI are, however, normally residents of the chromosome and therefore our analyses were extended to monitor the...

متن کامل

ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation

We investigated how Escherichia coli ClpXP targets the helicase-nuclease (HsdR) subunit of the bacterial Type I restriction-modification enzyme EcoKI during restriction alleviation (RA). RA is a temporary reduction in endonuclease activity that occurs when Type I enzymes bind unmodified recognition sites on the host genome. These conditions arise upon acquisition of a new system by a naïve host...

متن کامل

The structure of M.EcoKI Type I DNA methyltransferase with a DNA mimic antirestriction protein

Type-I DNA restriction-modification (R/M) systems are important agents in limiting the transmission of mobile genetic elements responsible for spreading bacterial resistance to antibiotics. EcoKI, a Type I R/M enzyme from Escherichia coli, acts by methylation- and sequence-specific recognition, leading to either methylation of DNA or translocation and cutting at a random site, often hundreds of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 197 2  شماره 

صفحات  -

تاریخ انتشار 2015